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Abstract. We present InstructHumans, a novel framework for instruction-
driven 3D human texture editing. Existing text-based editing methods
use Score Distillation Sampling (SDS) to distill guidance from genera-
tive models. This work shows that naively using such scores is harmful
to editing as they destroy consistency with the source avatar. Instead,
we propose an alternate SDS for Editing (SDS-E) that selectively incor-
porates subterms of SDS across diffusion timesteps. We further enhance
SDS-E with spatial smoothness regularization and gradient-based view-
point sampling to achieve high-quality edits with sharp and high-fidelity
detailing. InstructHumans significantly outperforms existing 3D editing
methods, consistent with the initial avatar while faithful to the textual
instructions. Project page: https://jyzhu.top/instruct-humans.
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1 Introduction

3D human avatars have broad applications in gaming, virtual reality (VR), and
augmented reality (AR) and there is a growing demand for intuitive methods
to create, customize and edit such avatars. With the recent development of
large vision-language models [25] and diffusion-based generative models [2, 26],
natural language has become a control signal to generate [10,19] and edit human
avatars [5, 21]. This work presents the first method for text-guided editing of
animatable 3D human avatars. Animatable avatars can be re-posed and offer
control over the 3D human pose, though this adds challenges in aligning texture
edits with a parametric animation or pose model. Previous works on text-guided
3D avatars are either not animatable [5, 21] or not editable [10,19].

A straightforward way of editing [7] is to alter the texture for a certain range
of mesh vertices. However, this method is complex and cumbersome, as it involves
manual texture definition and vertex selection. To make editing more intuitive,
we adopt the approach of InstructPix2Pix [2] that allows users to specify editing
with natural language. InstructPix2Pix performs 2D image editing through a
diffusion model given image and text instruction as conditions.

https://jyzhu.top/instruct-humans
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Fig. 1: Our approach provides animatable and editable 3D avatars. The outputs are
rich in detail while remaining consistent with the source avatar and editing instructions.

Score Distillation Sampling (SDS) [24] leverages the predicted noise of a 2D
diffusion model to guide the update direction for 3D models. Approach-wise,
SDS is straightforward and works well for 3D generation [17, 19, 20, 24, 27, 33]
and has been extended to 3D editing of scenes [15] and human avatars [21]. Yet
the resulting edited textures of the avatars tend to be blurry and compromise
characteristics that should remain constant, such as facial identity, or clothing.
These poor-quality results are partially addressed by fine-tuning a personalized
diffusion model [21], but leave much room for improvement.

Rather than post-processing, we study what we believe to be the cause of the
poor-quality edits - the SDS guidance signal. Unlike generation tasks starting
from a noise base, editing tasks already have a pre-defined source. For editing,
it is necessary to preserve certain aspects of the source - in our case, the 3D
geometry, and any unaffected facial or clothing texture sources that are not
specified by the edit. This dichotomy of “preservation” versus “change” presents
an inherent conflict with the guidance direction.

To further investigate, we break down SDS into individual terms. The baseline-
shift term leads to structure formation in the early stage of denoising and is
counterproductive to editing, as it causes shifts away from the original struc-
tures. Other terms, like the condition-divergence term and full-condition term,
are beneficial only at the appropriate optimization stages. Naively applied at
all stages, which is the case in standard SDS, these terms have conflicting and
counter-productive effects which result in poor-quality edits. Our findings lead
us to design the customized SDS-Editing (SDS-E) to distill guidance dedicated
towards 3D editing. Specifically, SDS-E introduces a temporal staging to se-
lectively apply the SDS terms with non-increasing sampled timesteps during
optimization, allowing control over the terms’ impact on the editing guidance.

We also investigate the spatial distribution of the distilled guidance and make
two innovations that improve the efficiency and quality of the edits. First, we
propose a gradient-aware view sampling strategy to dynamically allocate more
camera viewpoints based on the need for guidance. This sampling strategy di-
rects the editing focus toward desired regions and speeds up the overall editing
convergence. Secondly, we propose a smoothness regularizer to improve spatial
coherence and mitigate spotting and other artifacts in the resulting textures.

Summarizing our contributions: (1) We perform an in-depth analysis of SDS
for the 3D editing context and reveal the changing roles of the different SDS
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terms over the denoising process; (2) We introduce SDS for Editing with non-
increasing timestep sampling and selective temporal staging of the SDS terms to
distill effective editing guidance; (3) A gradient-aware camera view sampling that
improves editing efficiency and specificity; and (4) a smoothness regularizer that
enhances the quality of the edited textures by encouraging information exchange
in local latent codes. Experiments verify that our framework for instruction-
driven editing of 3D human avatars is highly effective. It is efficient and flexible,
and can produce faithful edits while maintaining consistency with the original
avatar. The resulting edited avatars are high-fidelity and adhere to the textual
instructions, all while remaining animatable.

2 Related Works

Text-guided 3D Editing. Traditional 3D editing procedures typically require
explicit visual guidance, such as 3D cages [14] and segmentation masks [29]. Uti-
lizing the power of 2D vision-language models [2,26,28], recent works intuitively
optimize 3D objects via text guidance. One line of works adopts CLIP-based
similarity as losses to guide the 3D editing [1, 10, 12, 13]. The outputs however,
are unrealistic and often require additional fine-tuning such as GANs. On the
other hand, SDS [24] succeeds in distilling information from 2D diffusion mod-
els. The use of the predicted noise to guide the update direction of 2D models
is straightforward yet practical. Meanwhile, it is also efficient in not requiring
back-propagation through large diffusion models. As such, SDS has been adopted
by many recent text-to-3D generation works to generate scenes and human
avatars [18,19,24,31,34]. Some works propose to improve SDS. DreamTime [11]
proposes a non-increasing timestep sampling strategy. CSD [36] proposes using
only classifier guidance in SDS. From a similar perspective to decompose SDS
into subterms by considering classifier-free guidance, SSD [30] analyzes the sub-
terms’ roles and proposes to add an adaptive estimator to reduce the variance.

Different from generation, editing optimizes an original source that is already
given, seeking consistency with both the original source and the editing changes.
DDS [6] tackles this difference in 2D image editing by additionally estimating
the score of the original image-text pair. Several works also adopt SDS into 3D
editing [15,21,35,37], but all of them use SDS naively in its full form.

3D Human Editing. Recent methodologies for avatar manipulation face var-
ious limitations. Some focus narrowly on specific areas, like the head [1,12,21] or
upper body [37], constraining their scope. Others, such as Instruct-NeRF2NeRF [5]
and NeRF-Art [32], utilize implicit NeRFs for human representation, which lacks
flexibility in control. A different approach involves explicit mesh representations,
as seen in Text2Mesh [22] and Chupa [16], which trade off accuracy and diver-
sity for explicit topology. While there are efforts towards generating drivable
3D humans [3, 10, 17, 19], the domain of editing these representations remains
underexplored. EditableHumans [7] leverages a parametric human mesh model
that encodes local texture and geometry features at mesh vertices, merging the
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explicit structure of meshes with the representational and editing versatility of
NeRFs. Building on this hybrid model, our work introduces text-driven editing
for animatable humans, offering intuitive control and flexible representations.

3 Score Distillation Sampling for Editing (SDS-E)

3.1 Preliminaries

InstructPix2Pix (IP2P) [2] is a text-driven image-editing diffusion model.
IP2P edits source image I according to text-instructions y by iteratively reducing
estimated noise ϵ̂ϕ from a noisy latent representation of the image z = E(I). To
that end, IP2P optimizes the following objective:

LIP2P(z, t, y, I) = w(t)∥ϵ̂ϕ(zt, t, y, I)− ϵ∥22. (1)

Above, t ∈ T denotes a uniform randomly sampled timestep, ϵ ∼ N (0, I) is the
ground truth Gaussian noise and w(t) is a weighting function depending on t. zt
is the noisy latent at timestep t, and is generated through an iterative forward
diffusion process: zt =

√
αtz +

√
1− αtϵ, where the coefficient αt represents a

predefined noise schedule.

Classifier-free Guidance (CFG) [9] allows for adjustable adherence to the
specified conditions through hyperparameter tuning. For a two-condition model
like IP2P with conditions I and y, CFG is expressed as a conditional probability
based on I and y, with hyperparameters ωt and ωI , respectively:

ϵ̂CFG
ϕ (zt, t, y, I) = ϵ̂ϕ(zt, t, ∅, ∅) + ωI · (ϵ̂ϕ(zt, t, ∅, I)− ϵ̂ϕ(zt, t, ∅, ∅))

+ ωt · (ϵ̂ϕ(zt, t, y, I)− ϵ̂ϕ(zt, t, ∅, I)).
(2)

Score Distillation Sampling (SDS) [24] leverages pre-trained 2D image
diffusion models to facilitate 3D generation. By applying the normal denoising
process of IP2P to a rendered image from a 3D model, SDS can be used to
distill editing guidance from the diffusion model into a 3D model. Specifically,
SDS assumes that the diffusion model’s noise ϵ correlates with the score function
(the gradient of the log-density) of the perturbed data distribution [8]:

ϵ̂ϕ = −σt∇zt log p(zt; t, y, I), where σt =
√
1− αt. (3)

This assumption means SDS directs updates towards the data distribution p(zt)’s
high-density regions. Applied to a 3D model parameterized by Θ, the gradient
can be given as:

∇ΘLSDS(ϕ, z) = [w(t)(ϵ̂CFG
ϕ (zt; t, y, I)− ϵ)

∂zt
∂Θ

], (4)

where ϵ̂CFG
ϕ (zt; t, y, I) is the IP2P model’s noise estimation guided by CFG.
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3.2 Score Distillation Sampling for Editing

Timestep Sampling. Standard SDS uses uniformly random sampling for timesteps
t. Previous analysis shows that large timesteps are crucial for forming coarse fea-
tures, while middle3 and small timesteps are geared towards detailing [4]. In the
context of 3D editing, we are already provided with a source 3D representation,
so large timesteps serve little value. In fact, having them may even break up the
initial structure and deviate from the original. As such, we opt to fully remove
large timesteps from the sampling.

Previously, [11] proposed a non-increasing timestep sampling strategy which
they showed to be more informative for updating 3D neural fields. We refer
to the Supplementary for detailed equations; the sampling strategy enforces a
monotonically decreasing envelope function to ensure that sampled timesteps
are non-increasing. We observe that using this sampling strategy for our 3D
human editing is more effective, as the successively smaller timesteps facilitate
the escape of intermediate modes and promote convergence towards the optimal
edited mode.

Decomposition of SDS. Our analysis begins with decomposing SDS for a two-
condition diffusion model. This process aims to distinguish the editing directions
influenced by the conditions and those influenced by the baseline (unconditioned)
noise model. We substitute Eq. 2 into Eq. 4 and split it into two parts as follows:

ϵ̂CFG
ϕ (zt; t, y, I)− ϵ = (ωI − 1) ·

(
ϵ̂ϕ(zt, t, ∅, I)− ϵ̂ϕ(zt, t, ∅, ∅)

)︸ ︷︷ ︸
m1

+ωt ·
(
ϵ̂ϕ(zt, t, y, I)− ϵ̂ϕ(zt, t, ∅, I)

)
+ ϵ̂ϕ(zt, t, ∅, I)− ϵ︸ ︷︷ ︸

m2

.
(5)

The first part, m1, weighted by ωI −1, is a baseline-shift term. m1 quantifies the
divergence induced by the image condition I, since it measures the shift from a
baseline (unconditioned) noise model to a conditionally influenced model. Note
this term measures shift from the image condition I only, and does not account
for the text instruction condition. The second part, m2, is a condition-integration
term, as it integrates the condition of the text instruction y and helps align the
generated output with the specified conditions of the image I and text y.

Since there is both a text instruction condition y and an image condition I
in m2, it can be further re-arranged into a form analogous to Eq. 5:

m2 = (ωt − 1) · (ϵ̂ϕ(zt, t, y, I)− ϵ̂ϕ(zt, t, ∅, I))︸ ︷︷ ︸
m3

+ ϵ̂ϕ(zt, t, y, I)− ϵ︸ ︷︷ ︸
m4

.
(6)

3 Timestep sizing is relative. To facilitate our discussion, we separate “small”, “middle”
and “large” timesteps, though our “small” and “middle” correspond to the “small”
timesteps of [30], as they only make a distinction between “small” and “large”.
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The term m3, weighted by ωt − 1, is a condition-divergence term that measures
the adjustment needed when shifting from a base image condition to integrate
the text condition y. Meanwhile, m4 is the full-condition term, as it captures the
model’s output with full consideration of the conditions.

While our decomposition of SDS is for a two-condition model, it has broader
applicability as similar principles can be applied to models with a different num-
ber of conditions. For example, concurrent work [30] can be regarded as a sim-
plified case of our decomposition for a single condition model.

Analysis of the Baseline-Shift Term m1. Based on Eq. 3, the baseline-shift
term can be represented by the score function as follows:

m1= ϵ̂ϕ(zt, t, ∅, I)− ϵ̂ϕ(zt, t, ∅, ∅)=−σt(∇zt log pϕ(zt; t, I)−∇zt log pϕ(zt; t)). (7)

Following the analysis of [30], the term m1 causes shifts away from natural
image distributions at small (and middle) timesteps. Specifically, when t → 0,
the distributions pϕ(zt; t, I) → pϕ(z; t, I) and pϕ(zt; t) → pϕ(z; t). As such, the
target of this term can be regarded as maximizing:

pϕ(zt; t, I)

pϕ(zt; t)
→ pϕ(z; t, I)

pϕ(z; t)
=

pϕ(z; I)

pϕ(z)
. (8)

An underlying assumption is that a latent z with a high conditional probability,
i.e., sourced from a mode of p(z; I), corresponds inherently to a plausible im-
age sourced from p(z). Yet maximizing the term pϕ(z;I)

pϕ(z)
also requires minimizing

pϕ(z), making it difficult to effectively target any mode of pϕ(z; I) and leads to
shifts away from natural image distributions. Empirically, this results in satu-
rated artifacts [30, 36]. As such, we follow [30]’s recommendation to omit this
term for small (and middle) timesteps.

Analysis of the Condition-Divergence Term m3. Similar to m1, m3 is
characterized by two directional influences: one towards the two conditional
mode pϕ(zt; t, y, I) and one away from the image conditional mode pϕ(zt; t, I).
Again, in the limit that t → 0, the condition-divergence term will then maximize

pϕ(zt; t, y, I)

pϕ(zt; t, I)
→ pϕ(z; t, y, I)

pϕ(z; t, I)
=

pϕ(z; y, I)

pϕ(z; I)
. (9)

Analogous to m1, we presume that a mode of p(z; y, I) should also be a mode of
p(z; I). Yet Eq. 9 cannot effectively drive the editing process towards a maximum
of pϕ(z; y, I) where pϕ(z; I) is also high, as the latter appears in the denominator
and gets minimized during the optimization process. This discourages conver-
gence to any significant mode of the distribution pϕ(z; I), thereby distancing the
result from the original image.

As such, we should remove the m3 term at small timesteps. However, empir-
ical evidence suggests that m3 significantly contributes to the guide towards the
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Table 1: Impact of SDS terms at different timesteps. The shading indicates utility; red
and green denote harmful and helpful respectively, while yellow denotes mixed effects.

Timestep Sizing m1 m3 m4

Large (> 800) Counterproductive
Middle (150-800) Counterbalance Intermediate trap

Small (< 150) Saturation Distant from image Two condition

text-conditioned mode, improving alignment with instructions. This presents a
nuanced trade-off between editing faithfulness and image fidelity. Therefore, the
decision to retain or exclude m3 at small timesteps is left as an open considera-
tion, reflecting a balance between these two aspects. In principle, m3 should also
be removed for middle timesteps; however, this would leave only the m4 term
for guidance, which is problematic in its own right. We further elaborate in the
analysis on m4.

Analysis of the Full-Condition Term m4. The full-condition term m4 can
be viewed as a guide towards a two-condition mode pϕ(zt; t, y, I). It is augmented
by a factor −ϵ that counterbalances the variance introduced by the noise without
altering the targeted mode:

m4 = ϵ̂ϕ(zt, t, y, I)− ϵ = −σt∇zt log pϕ(zt; t, y, I)− ϵ. (10)

Applying m4 alone may lead the model to be trapped in intermediate modes.
In particular, in large or middle timesteps, the denoising is incomplete, so the
peak of a joint probabilistic density with multiple modes is likely higher than that
of any individual desired mode [30]. This issue diminishes in smaller timesteps,
when the probabilistic density of the desired mode becomes higher and can
dominate the direction for the update. Yet in a uniformly random sampling
strategy for timesteps, as in standard SDS, revisiting large or middle timesteps
allows this issue to persist and disrupts the convergence to any desired mode.
This is the root cause for over-smoothing by SDS [24,30].

As such, we can either remove m4 at middle timesteps and use only m3, or
combine m3 and m4 (i.e. keep the full m2 term). Empirically, the latter yields
better results. Using m3 alone causes the output to shift too far towards the
text-conditioned mode and is problematic to optimize in its own right, as we
analyzed previously. Using the two together allows m4 to facilitate a balance of
the text and image conditions while allowing m3 to provide a counterbalance
for breaking free of intermediate modes. Combining the m3 and m4 terms with
non-increasing timestep sampling [11] produces the best results.

SDS-E: Score Distillation Sampling for Editing. Our analysis of the three
SDS terms based on timestep size is summarized in Table 1. Based on these
findings, we present a customized SDS for editing (SDS-E), where we selectively
apply the terms at distinct timestep sizes.
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For each sampled timestep t, SDS-E is defined as:

LSDS-E = ωt · (ϵ̂ϕ(xt, t, y, I)− ϵ̂ϕ(xt, t, ∅, I)) + ϵ̂ϕ(xt, t, ∅, I)− ϵ. (11)

We also consider an alternative where the condition-divergence term m3 is ex-
cluded at small timesteps:

L′
SDS-E =

{
LSDS-E if t > M

ϵ̂ϕ(xt, t, y, I)− ϵ if t ≤ M,
(12)

where M is the threshold between small and middle timesteps. We set M empir-
ically to 150; we also limit medium timesteps to 800 to exclude larger timesteps.

4 InstructHumans Editing Pipeline

Hybrid 3D Human Representation. We adopt the hybrid 3D human rep-
resentation proposed by EditableHumans [7]. It associates an explicit 3D hu-
man mesh model, SMPL-X [23], with an implicit NeRF. Each mesh vertex from
SMPL-X is linked with local geometry and texture latent codes. For a specific 3D
avatar, it stores trainable latent codes Θ, obtained by barycentric interpolation
of three local features accessed via vertex indices. EditableHumans also contains
a pre-trained NeRF or implicit network, which outputs RGB color c and SDF
value s for any queried global coordinate xg. Specifically, the implicit network Φ
is provided a local coordinate xl = M(xg) that is transformed from the global
coordinate xg = (x, y, z) and a local normal vector −→n . Conditioned on the latent
codes Θ, the implicit network provides the following:

Φ(Θ, xl,
−→n ) =

(
c(xg), s(xg)

)
. (13)

The global to local coordinate transformation is performed by finding the
nearest triangle on the body mesh of an input query point xg, and transforming
the position into local triangle coordinates xl = (u, v, d), where d is the dis-
tance. −→n is calculated as the direction of the closest point on the mesh towards
the global position to provide auxiliary information about the position. This
coordinate transformation ensures the NeRF can only access local features and
prevents it from memorizing any global information, and therefore provides the
ability for disentangling local features for further editing.

Editing Pipeline. Fig. 2 visualizes the entire pipeline. Starting with an input
human subject j and pre-trained latent codes Θj at mesh vertices, we optimize
the latent codes to modify the human texture. In each iteration, we render an
image Iv from a sampled camera view v using a conditional NeRF Φ. Image
Iv is provided to IP2P for editing, conditioned on the instruction y and an
original image rendered from the same view. We use our proposed SDS-E to
distill editing gradients from IP2P (Sec. 3.2). The gradients, together with a
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NeRFQuery IP2P

“Turn him into Joker”

Latent Codes

Local Coordinate

Driven by 

SDS-E

Gradient-aware 
Viewpoint Sampling

Back Propagation

m1

m2

m3

m4

Rendered Image

Original Image

Fig. 2: Instruction-driven 3D human editing pipeline. Our pipeline optimizes
a specific human subject’s texture based on textual instructions. Images rendered
through a conditional NeRF are edited by IP2P, with SDS-E used to distill the editing
gradients and update the texture latent codes. The editing is enhanced by gradient-
aware viewpoint sampling and a smoothness regularizer. The edited avatar is easily
drivable by altering pose parameters.

smoothness regularizer Lsmooth (see Eq. 14), are backpropagated for optimizing
the latent codes. Gradient-aware viewpoint sampling dynamically adjusts the
camera views based on the gradients. The edited human is easily drivable by
changing the SMPL-X pose parameter θ.

Laplacian Smoothness Regularization. EditableHumans [7] keeps texture
latent codes at each vertex independent. This provides animation flexibility, as it
disentangles the pose from the texture. For editing, this leads to the independent
estimation of gradients for each local latent code. Empirically, we observe the
independence assumption leads to uneven textures with spotting artifacts (see
Fig. 6). We speculate that the learned latent space is not sufficiently smooth
and therefore sensitive to minor perturbations. To mitigate the sensitivity and
artifacts, we introduce a smoothness regularizer to encourage the coordination
of the editing direction on local latent codes. Inspired by Laplacian loss used
in 3D reconstruction to encourage smoothness in the vertex deformations, we
propose a Laplacian latent smoothness:

Lsmooth =
1

N

N∑
i

∥(
−→
L
−−→
∆F )i∥2, (14)
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where N is number of vertices,
−→
L is the Laplacian matrix encoding the connec-

tivity between vertices, and
−−→
∆F is the matrix of delta latent codes, with each row

representing the delta vector in latent space before and after one iteration. This
regularizer penalizes large discrepancies in the delta latent codes between neigh-
boring vertices, thereby encouraging local smoothness for resulting textures. The
overall gradient is calculated as:

∇Θ(w1Lsmooth + LSDS-E). (15)

Gradient-Aware Viewpoint Sampling. Another challenge we observed is
that editing strengths are unevenly distributed in different body regions given
different textual instructions. For example, “Put the person in a suit” primarily
targets the clothing area, while “Turn him into Joker” emphasizes the facial
features. Such uneven distribution undermines the efficiency of a uniform random
viewpoint sampling due to misallocating editing efforts towards areas that do
not require significant modification.

To address this issue, we introduce a simple yet effective viewpoint sampling
technique utilizing the concept of editing strength. Thanks to the hybrid repre-
sentation, we can use the average gradient magnitude anchored at a region of
vertices to represent the editing strength of that region, and prioritize regions
according to editing strengths. First, we split the 10, 475 mesh vertices from
SMPL-X into 5 regions based on their source: the face, the back of the head, the
front body, the back of the body, and the arms. We then conduct one editing
iteration with a batch of |V | views uniformly sampled, and calculate the average
gradient magnitude wr across the region r:

wr =
1

|V |
1

|Sr|
∑
v∈V

∑
i∈Sr

∥∇(i)∥, (16)

where V denotes the set of sampled views, and Sr represents the set of vertices
within region r. Using wr as the weight, we adjust the sampling of camera views
for each region based on their normalized weights:

C(r) = wr∑
r∈R wr

|V |, (17)

where C(r) is the total number of views sampled for region r.
This method effectively redistributes the number of camera views per region.

Implementing this technique allows us to cap the number of sampled views at a
predefined limit, e.g ., 1000, and significantly reduce the time required for ren-
dering. Moreover, it also accelerates the convergence rate, leading to a reduction
in the overall number of editing iterations needed. In addition, it improves the
editing specificity on the desired regions, facilitating editing quality.

5 Experiments

Our goal is to edit drivable 3D human textures based on text instructions. De-
spite being the first to tackle this specific challenge, we ensure a robust evaluation
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by conducting both qualitative (Sec. 5.1) and quantitative (Sec. 5.2) comparisons
with baseline text-based editing methods for general scenes, including Instruct-
NeRF2NeRF [5] and SDS [24]. To validate the effectiveness of our proposed
methods, we provide a comprehensive ablation study (Sec. 5.3).

Implementation Details. We train 1000 steps and sample 50 camera views at
each step, with rendering resolution 400×400. The pre-trained NeRF and initial
human latent codes are from [7]. The camera views in the body regions, including
the front body, back body, and arms, are distributed at a circle with a radius 2
centered at the origin, and those in the head regions, including the face and back
of the head, are set on a circle with a radius 0.35 centered at the avatar’s head.
Camera positions are added with random offsets of 1%. The smoothness loss
weight is set at w1 = 300. The gradient-aware viewpoint sampling is conducted
once at the first editing iteration. For CFG setting, ωI = 1.5 and ωt = 7.5. The
editing process takes around 8 hours on an NVIDIA A5000 GPU.

5.1 Qualitative Experiment

We provide a qualitative comparison with Instruct-NeRF2NeRF (IN2N) [5] and
SDS [24] on human subjects from the CustomHuman Dataset [7]. This compari-
son leverages editing instructions from IN2N, augmented with more challenging
ones, such as "Turn him into wearing traditional Japanese kimono". The focus
on 3D generation in [24] differs from our 3D editing task, precluding a direct
comparison with SDS in its original framework. Hence, for a fair comparison,
we utilize our reimplementation, substituting SDS-E with SDS within our edit-
ing pipeline. As illustrated in Fig. 3, our method surpasses existing techniques
by delivering high-quality textures that not only adhere closely to the editing
instructions but also faithfully retain the original human characteristics. More
qualitative results showcasing the superiority of our approach can be observed in
Fig. 4. Furthermore, a key distinction of our approach is the ability to produce
animatable humans, in contrast to the non-animatable implicit NeRF represen-
tations generated by IN2N.
Application demo: Animation. We present a human animation demo in
Fig. 1 (right) in which the edited human is driven by arbitrary SMPL-X poses.

5.2 Quantitative Experiment

Metrics. Following IN2N [5], we measure the CLIP text-image directional sim-
ilarity (CLIP-Direc↑) to evaluate how well the editing direction aligns with the
textual instructions. To evaluate structural and semantic fidelity to the original
avatar, we also evaluate the CLIP image similarity (CLIP-Img↑) between the
rendered images of the edited and original avatars. Note that high CLIP-Img
scores may not solely indicate successful editing; they could also suggest editing
failure. Thus, examining both metrics in conjunction allows us to discern a bal-
ance between maintaining consistency with the original image and achieving the
intended editing outcomes.
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Original

“Make him wear 
traditional Japanese 
kimono”

“Turn the person 
into Tolkien Elf”

“Put the person in 
a suit”

“Turn him into a 
clown”

“Turn the person 
into Joker”

“Turn him into 
Lord Voldemort”

“Turn him into a 
Modigliani painting”“A bronze statue”

IN2N

SDS

Ours

Fig. 3: Qualitative comparison with IN2N [5] and SDS [24]. Our method excels
in texture quality, adherence to the original avatars, and conformity to editing in-
structions, while IN2N struggles to maintain adherence to the original and produce
high-quality textures, and SDS outputs textures with spotting and saturation.

Quantitative comparison with SOTA. In alignment with IN2N [5], our
quantitative analysis covers 10 total edits across 2 unique subjects. Metrics com-
parisons are shown in Tab. 2 and Fig. 5. Our method outperforms IN2N and
SDS in both terms of CLIP-Direc and CLIP-Img scores, achieving 0.162 and
0.838, respectively, demonstrating the superior ability to balance between the
two objectives – preserving the original image’s essence while closely following
the editing directives.
User Study. Since editing tasks lack definitive ground truths and are hence
subjective, we conducted a user study in addition to metrics evaluations, through
online Amazon Turk. Participants evaluated 10 pairs of editing comparisons
considering overall quality, adherence to editing instructions, and fidelity to the
original images. The survey reached 192 participants, garnering 800 responses
in total. According to the results summarized in Tab. 3, our approach surpasses
competing methods across all metrics, securing a 56.6% preference for overall
quality, 46.1% for text consistency, and 51.3% for image consistency.

5.3 Ablation Study

We conduct ablation studies to evaluate the impact of key components in our
3D human editing pipeline. Fig. 6 (a) demonstrates the necessity of the smooth-
ness regularizer, as its absence results in uneven textures with unrealistic spots,
notably on the face. Omitting gradient-aware viewpoint sampling leads to an
undesired shift in the edited face due to an imprecise editing focus. Moreover,
excluding this component results in 5× runtime.
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“A bronze statue”Original “Turn the person into a clown” “Turn the person into 
Lord Voldemort”

“Put the person in a suit”

Fig. 4: Qualitative visualization of our results. We illustrate 4 edits on each of 4
human subjects and obtain stable and high-quality editing results.

To validate the effectiveness of SDS-E, Fig. 6 (b) explores various design
choices. Without SDS-E (i.e., using standard SDS) significantly damages the
original clothing and facial features and produces saturation. Omitting non-
increasing timestep sampling adversely affects the convergence of clothing de-
tails, a consequence of intermediate traps detailed in Sec. 3.2. An alternative
approach that excludes term m4 during middle timesteps leads to deviations
from desired image guidance. Comparing our default LSDS-E with its alterna-
tive, L′

SDS-E, the former achieves a balance between editing instructions and
image adherence, while the latter preserves greater consistency with the origi-
nal image, as observed in facial features. Therefore, we recommend a selective
application of both loss functions, tailored to the specific editing contexts.
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Method CLIP-Direc↑ CLIP-Img↑

IN2N [5] 0.117 0.700
SDS [24] 0.151 0.827

Ours 0.162 0.838

Table 2: Quantitative Comparison.
Our method is superior in both CLIP-
Direc and CLIP-Img scores.

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
CLIP-Direc

0.4

0.5

0.6

0.7

0.8

0.9

CL
IP

-Im
g  IN2N

 (0.117, 0.700)

 SDS
 (0.151, 0.827)

 Ours
 (0.162, 0.838)

IN2N
SDS
Ours

Fig. 5: We plot the comparison of our
method against SOTA, showing a balanc-
ing between both metrics.

Table 3: User study results of 800 responses from 192 unique users. Ours is significantly
more preferred considering all three metrics. We omit the "uncertain" choices.

Method Quality Text Consistency Image Consistency

Instruct-NeRF2NeRF [5] 27.6% 34.6% 20.0%
SDS [24] 15.1% 18.5% 27.0%

InstructHumans (Ours) 56.6% 46.1% 51.3%

Original
w/o non-
increasing 
timestep

w/o SDS-E
w/o gradient-
aware viewpoint 
sampling

SDS-E’ Ours

(a) (b)

w/o m4 at 
middle 
timesteps

w/o

Fig. 6: Ablation studies.

6 Conclusion

This work presents a method for 3D human texture editing guided by textual
instructions, which combines intuitive editing capabilities with the flexibility to
animate the modified avatar. By analyzing and adapting SDS, we propose SDS
for Editing (SDS-E), to distill faithful and high-fidelity editing guidance from the
2D diffusion model. Enhancements including Laplacian smoothness regulariza-
tion and gradient-aware viewpoint sampling further augment the efficiency and
effectiveness of our editing pipeline. Experiments affirm our method’s superior
editing performance relative to existing text-based 3D editing approaches.
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Appendix

A Evaluating SDS Components Through a Toy Example

To assess the individual behaviors of the SDS components m1, m2, m3, and m4

outlined in Sec. 3.2, we introduce a toy example depicted in Fig. A1. This exper-
iment optimizes z = θ ∈ R2, in a 2D space p(z) that simulates the distribution of
images. Without losing generality, we consider a mixture of Gaussian distribu-
tions p(z) = 0.1N ([0, 0]⊤, 0.1I) + 0.15N ([3, 1]⊤, 0.1I) + 0.15N ([0.5, 1]⊤, 0.1I) +
0.3N ([1.5, 1.4]⊤, 0.05I)+0.3N ([1.5, 0.4]⊤, 0.05I). Each Gaussian component sig-
nifies a mode influenced by specific conditions. Specifically, the component at
[0, 0]⊤ represents the unconditional mode; the one at [0.5, 1]⊤ is the image con-
ditional mode; [3, 1]⊤ corresponds to the text instruction conditional mode; and
the components at [1.5, 1.4]⊤ and [1.5, 0.4]⊤ are two-conditional modes. We sim-
ulate the 3D editing process as guiding θ towards the two-conditional modes as
closely as possible, using estimators m1, m2, m3, and m4 adopted from Eq. 5
and Eq. 6, with their trajectories recorded.

Fig. A1 illustrates three distinct learning phases: The left plot shows the
initial phase, where θ is initiated at the image conditional mode [0.5, 1]⊤ to em-
ulate the onset of 3D editing from a plausible human figure. The middle plot
showcases the density map of P (zt; y, I) at a middle timestep t = 300, starting
θ at [1.3, 1]⊤—positioned in the middle of two target modes to highlight the
intermediate trapping issue discussed in Sec. 3.2. In the right plot, we present
the density map of P (zt; y, I) at a small timestep t = 100, with θ starting at
[1.7, 0.7]⊤, representing the latter stages of learning. Observations reveal that m1

invariably leads θ in a counterproductive direction, as diverging from the uncon-
ditional mode fails to facilitate convergence to the target modes. In the phase
with a middle timestep, m4 suffers from trapping into an intermediate mode at
the peak of the joint probabilistic density of two nearby dual-conditional modes,
whereas m3 demonstrates the capacity to extricate θ from this trapping point.
This trait is similarly observed with m2, as it combines m3 with m4. In the late
phase with a small timestep, however, m3 propels θ away from the desired high-
density region, a consequence of distancing from the image conditional mode.
While in this phase, both m4 and m2 steer θ towards the target. The effects of
all the terms are coherently aligned with our analyses summarized in Tab. 1.
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Fig.A1: Visualizing the impact of SDS components m1, m2, m3, and m4 in a
2D toy example. Each component, serving as an estimator, guides the optimization
of z = θ ∈ R2 within a Gaussian mixture model representing p(z). The objective is
to guide θ towards the two-conditional modes (red stars). Left: In an early phase, θ
is initiated at the image conditional mode (yellow star). The trajectory indicates that
m1 is counterproductive. Center: At middle timesteps, m4 faces entrapment by an
intermediate mode, while m3 (and by extension, m2) facilitates escape. Right: In small
timesteps, as θ nears the target mode, m4 and m2 drives towards the denser region,
while m3 guides a deviated direction due to distancing from the image conditional
mode. Detailed experimental settings are in Appendix A, and the detailed analysis of
the terms is in Sec. 3.2.

B Non-Increasing Timestep Sampling

The non-increasing timestep sampling function S as defined in DreamTime [11],
is given by:

S(ti) = arg min
t∗

|
T∑

t=t∗

p(t)− i

N
|, (A1)

where T represents the total noise levels in the pre-trained IP2P model, N
denotes the number of editing iterations, and p(t) denotes the normalized time
prior, calculated as w∗(t)/

∑T
t=1 w

∗(t). Here, w∗(t) is a non-increasing weight
function defined as:

w∗(t) =


e−(t−a1)

2/2b21 if t > a1

1 if a2 ≤ t ≤ a1

e−(t−a2)
2/2b22 if t < a2,

(A2)

with hyperparameters {a1, a2, b1, b2} modulating the decrease of timestep t. In
IP2P [2], the timestep range is set to [0, 1000].

C Impact of Gradient-Aware Viewpoint Sampling

We compare our proposed gradient-aware viewpoint sampling with a baseline
uniform viewpoint sampling. Our superior editing quality is depicted in Fig. A2.
The calculated weights wr (see Eq. 16) and numbers of sampled views C(r) (see
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Eq. 17) derived from our gradient-aware sampling are detailed in Tab. A1. Our
sampling strategy successfully assigns weights to specific regions based on the
editing instructions, ensuring that the editing focus is distributed strategically
and efficiently.

Table A1: Weights wr and number of sampled views C(r) for each region r derived
from our gradient-aware sampling. The total number of sampled views |V | is 50000.
For the "kimono" instruction, body regions are assigned relatively higher weights and
more sampled views, which aligns with the instruction’s semantical targets, i.e., cloth-
ing. In contrast, the head regions gain relatively more sampled views for the "clown"
instruction, which necessitates more intensive editing of the head.

Instruction Metric Region
Face Back of the head Front body Back of the body Arms

“kimono” Weight 0.04 0.08 0.47 0.26 0.15
View Number 2000 4000 23500 13000 7500

“clown” Weight 0.07 0.20 0.30 0.31 0.12
View Number 3500 10000 15000 15500 6000

Original Gradient-aware Uniform

“Make him into wearing traditional 
Japanese kimono” “Turn him into a clown”

Gradient-aware Uniform

Fig.A2: Our proposed gradient-aware viewpoint sampling produces more efficient
and specific editing by selectively focusing on desired regions per instruction, while the
baseline uniform viewpoint sampling results in inaccurate and blurry results.
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D Framework Comparison with Existing Works

We compare the capability of our work with existing works in Tab. A2. Ours is
the first to enable editing full-body animatable humans with textual instructions.

Table A2: Our method is designed to edit full-body humans that are animatable given
textual editing instructions. The other existing works can not fulfill all these functions.
“Editing” indicates the method is designed to maintain consistency with the original
personality.

Method Text-guided Animatable Full-body Editing

EditableHuman [7] ✗ ✓ ✓ ✓

Instruct-NeRF2NeRF [5] ✓ ✗ ✓ ✓

TADA [19] ✓ ✓ ✓ ✗

AvatarCLIP [10] ✓ ✓ ✓ ✗

AvatarStudio [21] ✓ ✗ ✗ ✓

Ours ✓ ✓ ✓ ✓

E Limitations and Potential Social Impacts

Our framework employs IP2P [2] for guiding texture edits on 3D human avatars.
IP2P is pre-trained on non-human-specific datasets; therefore, its generalization
to human editing might be limited, potentially affecting the accuracy and vivid-
ness of our edits. A viable approach to address this could be integrating other
diffusion models fine-tuned for human avatar editing. In addition, our frame-
work builds upon a hybrid human representation [7], which exhibits constraints
in capturing very high-frequent details and may produce artifacts at joint areas
under extreme poses. As suggested by [7], adopting a mesh template with more
vertices and training with sufficiently large datasets are potential solutions. Our
framework can easily incorporate improvements made in [7]. Finally, a common
challenge in 3D editing is the disentanglement of geometric and textural changes
given only 2D guidance. We focus on texture editing while maintaining the orig-
inal geometry to help preserve the avatars’ individual identities. Although some
existing works [5, 32] support concurrent geometric and textural editing, they
achieve that in a rough manner, ignoring the texture-geometry ambiguity, there-
fore producing artifacts, such as cloudy geometric noises and broken geometric
structures (see IN2N’s results in Fig. 5). Therefore, solving such ambiguity re-
mains a challenge we aim to tackle in future research.

Concerning potential social impacts, the ability to edit human avatars raises
issues related to copyright and privacy violations, and the dissemination of mis-
leading or harmful content. These risks stem from applying pre-trained models
without adequate safeguards against inappropriate use. By making our code
publicly available, we hope to foster future research for detecting and combating
inauthentic content involving 3D human editing.
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